How a Water Ionizer Works

The Ionized Water unit, slightly taller and thicker than a large dictionary on end, is an electrical appliance connected to your kitchen water supply to perform electrolysis on tap water before you drink it or use it in the kitchen for cooking or cleaning.

water ionizer electrolysis chamber example

A special attachment re-directs tap water out of the faucet through a plastic hose into the Ionized Water unit. Inside the Ionized Water unit, the water is first filtered through activated charcoal. Next, the filtered water passes into an electrolysis chamber equipped with a platinum-coated titanium electrode where electrolysis takes place.

Cations, positive ions, gather at the negative electrodes to create cathodic water (reduced water). Anions, negatively charged ions, gather at the positive electrode to make anodic water (oxidized water).

water ionizer smaller water molecule clusters
water ionizer larger water molecule clusters

Through electrolysis, reduced water not only gains an excess amount of electrons (e-), but the cluster of H 2O seem to be reduced in size from about 10 to 13 molecules per cluster to 5 to 6 molecules per cluster.

The reduced water comes out of the faucet, and the oxidized water comes out of a separate hose leading into the sink. You can use the reduced water for drinking or cooking. The oxidation potential of the oxidized water makes it a good sterilizing agent, ideal for washing hands, cleaning food or kitchen utensils, and treating minor wounds.



Normal tap water, for example, with a pH of 7 is approximately neutral on the pH scale of 0 to 14. When measured with an ORP (oxidation potential) meter, its redox potential is approximately +400 to +500 mV. Because it has a positive redox potential, it is apt to acquire electrons and oxidize other molecules. Reduced Ionized Water, on the other hand, has a negative redox potential of approximately -250 to -350 mV. This means it has a large mass of electrons ready to donate to electron-thieving active oxygen.

Before discussing the properties of Ionized Water further, let's take a look at what happens inside an Ionized Water producing unit.


Redox potential comparison

After electrolysis of the water inside the Ionized Water unit, reduced water comes out of the cathodic side and oxidized water comes out of the anodic side. Compare these measurements of these three types of water: tap water before electrolysis, the reduced water, and the oxidized water.

water ionizer redox potential


Traditionally we have judged the properties of water from the standpoint of pH, in other words, whether water is acidic or alkaline. According to Dr. Yoshiaki Matsuo PhD., the inventor of the Ionized Water unit, "In my opinion, redox potential is more important than pH. The importance of pH is over emphasized. For example, the average pH of blood is 7.4 and acidosis or alkalosis are defined according to deviation within the range of 7.4 +- 0.005. But nothing has been discussed about ORP, or oxidation-reduction potential."

The pH of tap water is about pH 7, or neutral. When tap water is electrolyzed into Ionized Water, its reduced water has a pH of about 9 and the oxidized water a pH of about 4. Even if you make alkaline water of pH 9 by adding sodium hydroxide or make acidic water of pH 3 by adding hydrogen chloride, you will find very little change in the ORP values of the two waters. On the other hand, when you divide tap water with electrolysis you can see the ORP fluctuate by as much as +- 1,000 mV. By electrolysis we can obtain reduced water with negative potential that is good for the body.


The Ionized Water unit produces two kinds of water with different redox potentials, one with a high reduction potential and the other with a high oxidation potential.

water ionizer active oxygen


When taken internally, the reduced Ionized Water with its redox potential of -250 to -350 mV readily donates its electrons to oddball oxygen radicals and blocks the interaction of the active oxygen with normal molecules.

A biological molecule (BM) remains intact and undamaged.

Undamaged biological molecules are less susceptible to infection and disease. Ionized Water gives up an extra electron and reduces the active oxygen (AO), thus rendering it harmless. The AO is reduced without damaging surrounding biological molecules. Substances which have the ability to counteract active oxygen by supplying electrons are called scavengers. Reduced water, therefore, can be called scavenging water.

When taken internally, the effects of reduced water are immediate. Ionized Water inhibits excessive fermentation in the digestive tract by reducing indirectly metabolites such as hydrogen sulfide, ammonia, histamines, indoles, phenols and scatoles, resulting in a cleaner stool within days after reduced water is taken on a regular basis. In 1965, the Ministry of Welfare of Japan announced that reduced water obtained from electrolysis can prevent abnormal fermentation of intestinal microbes.


Oxidized water with its redox potential of +700 to +800 mV is an oxidizing agent that can withdraw electrons from bacteria and kill them. The oxidized water from the Ionized Water unit can be used to clean hands, kitchen utensils, fresh vegetables and fruits, and to sterilize cutting boards and minor wounds. Tests have shown that oxidized water can be used effectively to treat athlete's foot, minor burns, insect bites, scratches, and so on.

Dr. Yoshiaki Matsuo, Vice Director of the Water Institute of Japan, has developed another apparatus capable of producing hyperoxidized water with a redox potential of +1,050 mV or more, and a pH lower than 2.7. Tests have shown that this hyper oxidized water can quickly destroy MRSA (Methecillin Resistant Staphylococcus Aureus).

Although hyperoxidized water is a powerful sterilizing agent, it won't harm the skin. In fact, it can be used to heal. Hyperoxidized water has proven effective in Japanese hospitals in the treatment of bedsores and operative wounds with complicated infections. But perhaps the most exciting future application of hyperoxidized water is in the field of agriculture where it has been used effectively on plants to kill fungi and other plant diseases. Hyperoxidized water is non-toxic, so agricultural workers can apply it without wearing special protective equipment because there is no danger of skin or respiratory damage. An added benefit of using hyperoxidized water to spray plants is that there is no danger to the environment caused by the accumulation of toxic chemicals in the ground.